Support K-12 Computer Science Education in Connecticut

Computer science drives job growth and innovation throughout our economy and society. Computing occupations are the number 1 source of all new wages in the U.S. and make up over half of all projected new jobs in STEM fields, making Computer Science one of the most in-demand college degrees. And computing is used all around us and in virtually every field. It’s foundational knowledge that all students need. But computer science is marginalized throughout education. Only 45% of U.S. high schools teach any computer science courses and only 11% of bachelor’s degrees are in Computer Science. We need to improve access for all students, including groups who have traditionally been underrepresented.

Computer science in Connecticut

- Connecticut currently has 3,223 open computing jobs (3.2 times the average demand rate in Connecticut).
- The average salary for a computing occupation in CT is $100,358, which is significantly higher than the average salary in the state ($60,780). The existing open jobs alone represent a $323,453,304 opportunity in terms of annual salaries.
- Connecticut had only 564 bachelor's degrees in Computer Science in 2018; only 20% were female.
- Only 3,145 exams were taken in AP Computer Science by high school students in Connecticut in 2019 (1,216 took AP CS A and 1,929 took AP CSP).
- Only 29% were female (24% for AP CS A and 32% for AP CSP); only 322 exams were taken by Hispanic/Latino/Latina students (91 took AP CS A and 231 took AP CSP); only 152 exams were taken by Black/African American students (32 took AP CS A and 120 took AP CSP); only 3 exams were taken by Native American/Alaskan students (2 took AP CS A and 1 took AP CSP); only 1 exam was taken by Native Hawaiian/Pacific Islander students (0 took AP CS A and 1 took AP CSP).
- Only 135 schools in CT (51% of CT schools with AP programs) offered an AP Computer Science course in 2018-2019 (29% offered AP CS A and 38% offered AP CSP), which is 19 more than the previous year. There are fewer AP exams taken in computer science than in any other STEM subject area.
- Teacher preparation programs in Connecticut did not graduate a single new teacher prepared to teach computer science in 2018.
- According to a representative survey from Google/Gallup, school administrators in CT support expanding computer science education opportunities: 66% of principals surveyed think CS is just as or more important than required core classes. And their biggest barrier to offering computer science is the lack of funds for hiring and training teachers.
What can you do to support K-12 CS education in Connecticut?

- Send a letter:
 - To your school/district asking them to expand computer science offerings at every grade level: www.code.org/promote/letter
 - To your elected officials asking them to support computer science education policy in Connecticut: www.votervoice.net/Code/campaigns/58463/respond
- Find out if your school teaches computer science or submit information about your school's offerings at www.code.org/yourschool.
- Visit www.code.org/educate/3rdparty to find out about courses and curriculum from a variety of providers, including Code.org.

Who can you connect with locally to talk about K-12 CS education policy?

- You can reach Code.org's policy contact for your state, Amy Roberts, at amy.roberts@code.org.
- The Expanding Computing Education Pathways (ECEP) Alliance (www.ecepalliance.org), an NSF funded Broadening Participation in Computing Alliance, seeks to increase the number and diversity of students in computing and computing-intensive degrees by promoting state-level computer science education reform. ECEP supports 22 states and the territory of Puerto Rico to develop effective and replicable interventions to broaden participation in computing and to create state-level infrastructure to foster equitable computing education policies. You can reach your ECEP point of contact Chinma Uche at cuche@crec.org or Seth R Freeman at sfreeman@ccc.commnet.edu.

Code.org's impact in Connecticut

- In Connecticut, Code.org's curriculum is used in
 - 25% of elementary schools
 - 23% of middle schools
 - 11% of high schools
- There are 6,339 teacher accounts and 336,393 student accounts on Code.org in Connecticut.
- Of students in Connecticut using Code.org curriculum last school year,
 - 29% attend high needs schools
 - 11% are in rural schools
 - 46% are female students
 - 56% are students from marginalized racial and ethnic groups underrepresented in computer science (Black/African American, Hispanic/Latino/Latina, Native American/Alaskan, or Native Hawaiian/Pacific Islander)
- Code.org, its regional partner(s) Sacred Heart University, and 9 facilitators have provided professional learning in Connecticut for
 - 932 teachers in CS Fundamentals (K-5)
 - 33 teachers in Exploring Computer Science or Computer Science Discoveries
 - 33 teachers in Computer Science Principles

“Computer Science is a liberal art: it’s something that everybody should be exposed to and everyone should have a mastery of to some extent.”

— Steve Jobs
What can your state do to improve computer science education?

States and local school districts need to adopt a broad policy framework to provide all students with access to computer science. The following nine recommendations are a menu of best practices that states can choose from to support and expand computer science. Not all states will be in a position to adopt all of the policies. Read more about these 9 policy ideas at https://code.org/files/Making_CS_Fundamental.pdf and see our rubric for describing state policies at http://bit.ly/9policiesrubric.

State Plan - The Connecticut State Board of Education adopted a computer science plan in 2020. The plan includes recommendations to reduce gaps in access to computer science courses for female students, students with high-need, and students from marginalized racial and ethnic groups underrepresented in computer science. The plan also targets diverse representation in teachers of computer science courses.

K-12 Standards - Connecticut adopted the CSTA K–12 Computer Science Standards in 2018. Standards within each grade band address concepts of equity, such as bias, accessible technology, and inclusivity.

Funding - Connecticut does not yet provide dedicated funding for rigorous computer science professional development and course support. Although funds may be available via broader programs, the state can strengthen its computer science programs by creating specific opportunities to bring computer science to school districts, such as matching fund programs.

Certification - In Connecticut, teachers with existing licensure can obtain the K–6 or 7–12 endorsement through academic coursework or passing the Praxis CS exam (approved in December 2019).

Pre-Service Programs - SB 957 (2019) required teacher preparation programs to include, as part of the curriculum for all preservice candidates, instruction in computer science that is grade-level and subject-area appropriate.

Dedicated State Position - The Connecticut Department of Education has a Computer Science Education Consultant.

Require High Schools to Offer - SB 957 (2019) added computer science to the list of subjects that public schools must teach, with implementation by the 2019–2020 school year.

Count Towards Graduation - Connecticut does not yet allow computer science to count for a core graduation requirement. States that count computer science as a core graduation requirement see 50% more enrollment in their AP Computer Science courses and increased participation by students from marginalized racial and ethnic groups underrepresented in computer science. Find out how other states allow computer science to count towards graduation at http://bit.ly/9policies.

IHE Admission - Connecticut does not yet allow computer science to count as a core admission requirement at institutions of higher education. Admission policies that do not include rigorous computer science courses as meeting a core entrance requirement, such as in mathematics or science, discourage students from taking such courses in secondary education. State leaders can work with institutions of higher education to ensure credit and articulation policies align with secondary school graduation requirements.

Follow us!

Join our efforts to give every student in every school the opportunity to learn computer science. Learn more at code.org, or follow us on Facebook and Twitter.

Launched in 2013, Code.org® is a nonprofit dedicated to expanding access to computer science, and increasing participation by women and underrepresented youth. Our vision is that every student in every school should have the opportunity to learn computer science.

Data is from the Conference Board for job demand, the Bureau of Labor Statistics for state salary and national job projections data, the College Board for AP exam data, the National Center for Education Statistics for university graduate data, the Gallup and Google research study Education Trends in the State of Computer Science in U.S. K-12 Schools for parent demand, the 2018 Computer Science Access Report for schools that offer computer science, and Code.org for its own courses, professional learning programs, and participation data.